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Instructions: 1. This exam contains 12 pages including this cover sheet and a formula sheet.
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Part A (41 Points)

1. (Total 13 Points) Find the limits of the following functions.
1-cos® x

1.1) (4 points) limM————
) (4 poin )"_’0\/1+sin2x—1

. +4
1.2) (4 points) yh—l;noo tan(:; 7: \[;]



1 1
i lim -
1.3) (5 points) 1, (ln (x+1) sinxj



2. (7 points) Let s be the function defined by

sin x < 0
VBx*+x ’
f(x) =5 A ;x =0
ex_e3x
;x> 0.
(-x)in(x+h °

Find the constants 4 and B so that this function is continuous at x=0.



3. (5 points) Find -j—cos x by using the definition of derivative.
X

4. (4 points) In Physics Laboratory, a particle is moving along the X-axis. Its distance from

the sensor is given by
s(t) = 2cos (zt)—sin(ztj.
2 4

Find the average velocity of this particle from =2 to ¢ = 6 and find the instantaneous
rate of change of § at £=6.



d arctanx
) : Fi ~le 1+x2 )
5. (5 points) Find T ( ]

6. (7 points) Find 4 where y is a function of x and is implicitly defined as
P . p

X
! +1
Y Ny

y+3



Part B (39 Points)

1
7. (4 points) Let f be the function defined by f(x) = \/.1— for all real numbers x <1.
-Xx

Find f %% (x).

8. (5 Points) Find the values of the constants a, b and ¢ such that the graph of
g(x)=ax’+bx*+cx passes through the point (~1,0) and has an inflection point at the
point (11).
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9. (Total 17 Points) Let f(x)= n for any real numbers x # 1.

x —_
9.1) (3 Points) Find all horizontal and vertical asymptotes of the function f .

9.2) (3 Points) Find the intervals on which f is increasing and which f is decreasing.



9.3) (3 Points) Find all critical points of the function f and determine if each critical

point gives a relative maximum, a relative minimum or neither.

9.4) (3 Points) Find the intervals on which f is concave up and which f is concave
down. (Hint: Note that x> —4x+5=x"-4x+4+1=(x-2)"+1 >0 forall xeR.)

9.5) (2 Points) Find all inflection points of the function f .
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9.6) (3 Points) Sketch a graph of the function f.

10. (6 Points) A square is inscribed in a circle of radius r as shown in the figure below. Assume
that the radius of this circle is increasing at a rate of 4 inches/second. Find the rate of

change of the area of the square when the (instant) radius of this circle equals to 2 inches.

10



11. (7 Points) Find the equation of the tangent line L to the graph of the parabola y =1 ~x

at the point P(x,,y,) such that the triangle in the first quadrant enclosed by the x-axis, the

y-axis and the line L has minimum area.
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DERIVATIVES FORMULAS

l.

11.

12.

15.

17.

18.

20.

21.

22.

d

—()=0,cisac
dx() cisaco

d

nstant

—(cu) =C—Z—Z—, u = u(x)

dx
___(un =n n—\ili
dx

_~_( iv)_—_gﬁig_v_\
dx dx dx
d dv  du
—W)=u—+v—
dx dx dx

du Q
du _vdx udx 0
&)
a . du
—(sinu) =cosu—
dx dx
d .
Zx-(cosu)z-smu—-
—d—(tan u) = sec? uili
dx dx
il,-(cot u) = —csc? u~d—u
dx dx

d du
—(secu) =secutanu—
dx dx

d du
—(cscu) = ~cscucotu—

dx dx
i1—(arcsinu)= ! gﬁ,—l<u<1
dx 1-u?
i(arccosu)::— ! ﬂ,—'l<u<1
dx 1—u2 dax
—d—(arctanu)= 2111

dx 1+u” dx
i(arccotu)=— ! 2@

dx 1+u” dx
EC(arcsecu)*————]——ii-li lu|>1
dx |u|Vut -1 dx :
i(arccscu)— 1 lu|>1
dx |u|Vu? -1 a ’
i(lnu)_l_‘?ﬂ

dx u dx

d 1 du*

—(lo = —.,a#0,1

dx( 8. 4) wina de *

d , .du

—e =g —

dx dx

u u du
—a" =a"Inag—
dx dax
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Trigonometric Formulas

sin(A4+ B) = sin Acos B +cos Asin B
sin(A — B) =sin Acos B—cos Asin B
cos(A+ B)=cos Acos B—sin Asin B
cos(A4 - B) =cos Acos B +sin Asin B
2sin Acos B = sin(A4 + B) +sin(4 —~ B)
2sin Asin B = cos(A4 — B) ~cos(4 + B)
2cos Acos B =cos(A+ B) +cos(4A— B)
sin2A =2sin Acos A

cos2A4 =cos’ A—sin’ 4
cos24=2cos’ 4 -1
cos24=1-2sin* 4

sin? A+cos’ A=1

sec’ A—-tan* A=1

csct A—cot’ A=1
sin® 4 =—1—-—1-0052A
2 2

cos’ 4 =l+—1-coszA
2 2



