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l. Let x be a number which is stored into a computer with 32 bits in binary 

system by IEEE standard as follows: 

1 10001001 10010110001000000000000 

Find the value of x in decimal system (5 marks). 
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2. Let P(x) = 0.4x3 + 0.2x2 + 0.6x - 1. 

(a) Show that the equation P(x) = 0 has exactly one solution in [O, 1] 

(2 marks). 

(b) Then, apply Newton's method with the initial value x0 = 0.8 

combining with Horners's method to find an approximation x of 

the solution such that jP(x)j < 0.5 x 10-3 (12 marks). 

(c) Round x to 3 decimal places (1 mark). 



4 MTH303 NUMERICAL METHODS- MIDTERM EXAM 1/2018 

3. Suppose that J(x) = x3e-x + l. 

(a) Use the graphical method to find an interval [a, b] which contains 

the solution of the equation f (x) = 0, and on which fixed-point 

iteration will converge (5 marks). 

(b) Thus, by using the method of fixed-point iteration, find an ap

proximation x = Xn of the solution such that lxn -Xn-il < 0.5 x 10-3 

(Hint: Use x 0 = b from the interval [a, b] as the initial value) (9 

marks). 

(c) Round x to 3 decimal places (1 mark). 
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4. Consider the following data Yi = J(xi) for i = 0, 1, 2, 3, 4: 

f(0) = 2 f(0.25) = 2.6487 f(0.5) = 3.7183 f (0.75) = 4.4817 f (1) = 3.6522 

(a) Set up the Finite Divided Difference table (8 marks). 

(b) Use Newton's backward difference formula to estimate f(0.8) 

(5 marks). 

(c) Use Gauss forward formula to estimate f(0.6) (5 marks). 

( d) Estimate f (0.15) by using Lagrange interpolating polynomials 

of degree 2 and the following data Yi = f (xi) for i = 0, 1, 2: 

f(0) = 2 f(0.25) = 2.6487 f(0.5) = 3.7183 

(12 marks) 

Attention! In all parts in above, round the answer to 4 decimal places. 
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5. Apply the Simpson's 1/3 rule to approximate the definite integral 

/1 1 dx 
) 0 1 +x 

such that I error I < 0.5 x 10-4. Then, round the answer to 4 decimal places 

(15 marks). 
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Newton's backward difference formula 
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Trapezoidal rule 

b n-I 1 f(x)dx"" (h/2)[f(xo) + J(xn)] + h ~ J(x,) 

h=(b-a)/n 

Xo = a,Xn = b 

Xi=a+ih; i=0,1,2, ... ,n 

\Error\ < (\b- a\/12)h2 
maxa::;x::;b \f(2)(x)\ 

Simpson's 1/3 rule 

b m m-I 1 J(x)dx "" (h/3)[f(a) + J(b) + 4 L f (x2,-1) + 2 L J(x2i)] 
a i=I i=l 

n=2m 

h = (b - a)/n 

Xo = a,Xn = b 

Xi = a+ ih; i = 0, 1, 2, ... , n 
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