

King Mongkut's University of Technology Thonburi

Midterm Examination Semester 1 Academic Year 2018

CVE 338: Structural Analysis II

Date: 2nd October 2018

Time 9:00 -12:00

Instructions:

3

- 1. The exam has 4 questions in 11 pages. Total points are 40 points with each question not of equal points.
- 2. Read the questions carefully and strictly follow instruction.
- 3. Textbooks and written materials are not allowed in the examination room.
- 4. A calculator is allowed.
- 5. Write your name on every page.
- 6. Perform your work in the examination paper.

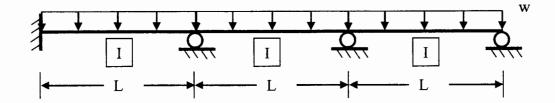
Examiner: Assistant Professor Dr. Aphinat Ashakul Tel. 02-470-9148

This examination paper has been approved by the Department of Civil Engineering

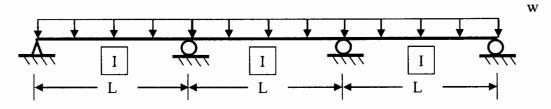
Associate Professor Dr. Sutat Leelataviwat Head of the Civil Engineering Department

Student Name & I.D._____

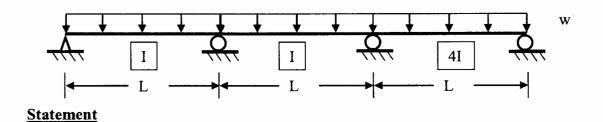
Student Name & I.D.


~

1. (6 Points) Write problem statements for the structures shown if the method of Slope Deflection is to be employed. Statements must contain the following:

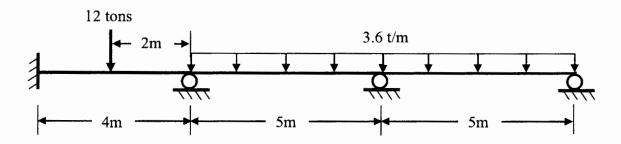

Degrees of Freedom of the structure need to be solved in general

Degrees of Freedom of the structure need to be solved when taking advantage of symmetry and simple end-support conditions


No of equilibrium equations needed

Statement

Statement


•

2. (15 points) Solve the continuous beam shown by using the <u>Slope Deflection</u> <u>Equation</u>. Solution must include:

a) Free body diagram with complete end moments and shear, and

b) Values of maximum positive and negative moment for each member EI is constant.

- A problem statement must be written (your unknowns and no. of equilibrium equations must be stated <u>prior to calculation</u>)
- It is recommended that the modified equation for a simple end support be used to help reduce the unknowns.
- Wrong stiffness and FEM will result in zero points meaning you are judged not to have the ability to solve the structure at all.

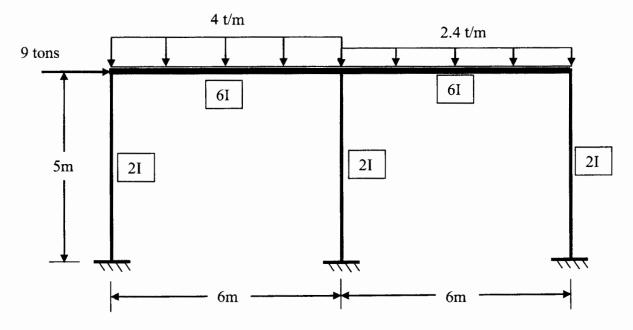
•

v

۲

3. (10 points) Solve the following beam by using the <u>Moment Distribution Method</u>. Free Body Diagram presenting end moments and shear must be presented. EI is constant.

- It is recommended that the modified stiffness for a simple end support be used to help reduce the procedure.
- Wrong stiffness and FEM will result in zero points meaning you are judged not to have the ability to solve the structure at all.
- It is also recommended that you perform the moment distribution on this page underneath the problem calculations of stiffness and FEM can be done in the next page.



۲

.

4. (9 points) Establish the equilibrium equations necessary to solve the frame shown.

• A problem statement must be provided.

.

•

Selected Fixed End Moments

Load Characteristics	FEMAB	FEM _{BA}		
BB	$-\frac{PL}{8}$	$\frac{PL}{8}$		
∎a v b∎	$-\frac{Pab^2}{L^2}$	$\frac{Pa^2b}{L^2}$		
W= wL	$-\frac{wL^2}{12} = -\frac{WL}{12}$	$\frac{wL^2}{12} = \frac{WL}{12}$		
$\begin{array}{c} \bullet \\ \bullet \\ \bullet \\ W = wc \end{array} \qquad $	$-\frac{Wa}{12L^2}[12a^2b + c^2(L - 3b)]$	$\frac{Wa}{12L^2}[12ab^2 + c^2(L - 3a)]$		
W= wa	$-\frac{Wa}{12L^2}(6L^2-8aL+3a^2)$	$\frac{Wa^2}{12L^2}(4L-3a)$		
If a = L/2 in the case above	$-\frac{11wL^2}{192}$	$\frac{5wL^2}{192}$		
a b	$\frac{Mb}{L^2}(3a-L)$	$\frac{Ma}{L^2}(3b-L)$		
	$\frac{6EI\Delta}{L^2}$	$\frac{6EI\Delta}{L^2}$		

Slope-Deflection Equations

$$M_{ij} = 2E(K)_{relative} (2\theta_i + \theta_j - 3\psi_{ij}) + FEM_{ij}$$

Modification for Simple End Support (When i is the simple end)

$$M_{ji} = 3E(K)_{relative} (\theta_j - \psi_{ij}) + FEM_{ji} - FEM_{ij}/2$$

Useful Moment Distribution modified stiffness

Simple End Support:	$\mathbf{K}^{\mathbf{m}}$		0.75k
Symmetry with odd number of spans:	K^m	=	0.5k
Anti-symmetry with odd number of spans:	K ^m	=	1.5k
Symmetry with even number of spans:	K^m	=	1.0 k
Anti-symmetry with even number of spans:	$\mathbf{K}^{\mathbf{m}}$	=	0.75k