

Seat No.	

King Mongkut University Of Technology Thonburi

Midterm Examination

Semester 1/2017

Subject: EIE 326 Electronics Communication Engineering

Student: 3rd Yr. Electronics & Telecommunication Eng.

Date: October 2nd, 2016

Time: 09.00-12.00PM

Instructions

- 1. There are 50 questions (101 points) in 10 pages. The formulas are included in the last page.
- 2. Answer all question in these papers.
- 3. KMUTT approved calculator can be used.
- 4. No documents allowed
- 5. You are not allowed to bring the question papers out of the examination room.

Notes

- When finish, raise your hand for the permission to leave the room.
- Any misbehave in this room may result to the highest penalty

Name	Student ID
TYGITIO	Otdaorit ib

Assistant Prof. Chanin Wongngamkam Tel: 9070

This papers have been approved

R. Silyt

(Assoc. Prof. Rardchawadee Silapunt, Ph.D.)

Head of Electronics & Telecommunication Engineering Dept.

Name.		ID no		
(1-30)	Mark X over the best choice in	the answer sheet on page 9 (1 point each)	
1.	Calculate the noise power at T	300K, BW. 100MHz.		
	a. 0.3 pW	b. 0.4pW	c. 0.5 pW	d. 0.6 pW
2.	Convert your answer to dBm.			
	a93.8 dBm	b103.8 dBm	c111.8 dBm	d115.7 dBm
3.	Calculate the equivalent noise	temperature when the noise fa	actor is 1.5	
	a . 130K	b. 135K	c. 140K	d. 145K
4.	While operating an RF amplifie	er, the input noise is measured	as -100 dBm and the o	/p is at -99.7
	dBm. Calculate the noise fac	tor of this amplifier.		
	a. 1.0755	b. 1.2755	c. 1.0715	d. 1 .0015
5.	If the circuit in 4 employ a BJT	, find the noise figure of this B	JT?	
	a. 1.7 dB	b. 1.2 dB	c. 0.3 dB	d. 0.7 dB
6.	What is the method that can p	revent the spurious signals from	m the DDS?	
	a. Applies a low pass filter aft	ter the DAC	b. Decrease the clock	frequency
	c. Increases the clock freque	ncy	d. Increase the number	er of bit
7.	RF BJT amplifier at the receive	er frontend is configured in con	nmon base for what pur	rpose?
	a. Its input impedance is high	h	b. Its input impedance	e is low
	c. High current gain		d. Wide bandwidth	
8.	What is the noise level at T 29	0K in dBm/Hz?		
	a178 dBm/Hz	b177 dBm/Hz	c175 dBm/Hz	d174dBm/Hz
9.	What is the range that the crys	stal oscillator can oscillate?		
	a. At series resonance		b. At parallel resonance	ce
	c. Between series resonance	and anti-resonance	d. All is correct	
10	. What is the advantage of the I	PFD type phase detector when	compare to the others?	?
	a. Higher Q		b. Wider detection ran	nge

c. Provides more o/p level

d. All is correct

Nan	ne	ID no				
11.	Why the charge pumped	output is better than the logic	c output?			
	a. Suitable for connec	tion with the external capaci	tor	b. Provide higher	rvoltage	
	c. Increases the voltage	ge faster		d. All is c	orrect	
12.	The reactance of the cryst	al will be inductive at what fr	equency?			
	a. At series resonance	freq.	b. At fr	equency beyond t	the series resonand	се
	c. At frequency lower t	han the series resonance	d. No d	correct answer		
13.	S/N of the FM radio can be	e improved if the input C/N is	more that	n one specific valu	ue, this is called?	
	a. Capture range			b. Threshold effe	ect	
	c. Capture effect			d. No correct ans	swer	
14.	What could the FM transm	itter do to increase the S/N o	of the FM ra	adio receiver?		
	a. Increases the carrie	r frequency		b. Increase the d	deviation	
	c. Increases the transr	nitted power		d. All is correct		
15.	Phase noises of an integer	frequency synthesizer can	be increas	sed if?		
	a. Connects a capacit	or to the power supply		b. V _{DD} is increase	ed	
	c. N is increased			d. All is correct		
16.	The unit for the phase nois	e is?				
	a. dB	b. dBc		c. dBC/Hz	d. dBm	
17.	Which one should be the f	irst consideration for the line	arity of an	amplifier?		
	a. Gain	b. High IP2		c. High IP3	d. All is corr	ect
18.	The ST cut provide better	performance to the crystal. H	How?			
	a. Low temperature Co	pefficient		b. Low resistance	е	
	c. Hi Accuracy			d. All is correct		
19.	Which statement is correc	t?				
	a. Capture range > Lo	ck range		b. o/p of the PFD) is Tri state	
	c. Under modulation le	eads to distortion		d. No correct ans	swer	
20.	Find the noise figure that	is comparable to the equival	lent noise	temp of 120K?		
	a 12dB	h 13dB		c 14 dB	d 15 dB	

Name	9	ID no		
21. Calculate the power over a 50 Ohm load by 1 μV_{ms} signal?				
	a107 dBm	b117 dBm	c109 dBm	d119 dBm
22. A	t 200KHz, what is true for a ser	ries RLC with R = 200 Ω ,	$L = 10 \mu H, C = 0.01 \mu F$?	
	a. Current lag the voltage		b. Current lead the voltage	
	c. Current and voltage is in p	phase	d. Voltage is zero at resonant	
23. A	.50 + j1 Ω source is connected	to a 50Ω load, how is th	e circuit perform?	
	a. There is no effect at low fr	equency	b. It is inductive at low freque	ncy
	c. It is inductive at high frequ	uency	d. All is correct	
24. V	Vhat is the condition that provid	les hi Z to the PD _{out} pin of	the MC145152?	
	a. The positive going edge of	of F _R lead F _{IN}	b. The positive going edge of	F _R lag F _{IN}
	c. The positive going edge of	of F _R is in time with F _{IN}	d. No correct answer	
25. V	Where can we observe the lock	characteristics of the PL	L?	
	a. At F _R		b. Output of Low pass filter	
	c. Output of Divide by N		d. At the output of the VCO	
26. Locate the phase noise measurement point on the Integer N PLL?				
	a. At F _R		b. Output of Low pass filter	
	c. Output of Divide by N		d. At the output of the VCO	
27. lf	the output of the Phase Freque	ency Detector remains a	$\pm + V_{DD}$ for > 2 periods of F_R . The	is means
	a. There is no phase differen	ce from 2 inputs	b. It is in the phase detection	mode
	c. It is in the phase lock mod	е	d. It is in the frequency detec	tion mode
28. V	What is the effect of noises to th	e FM signal?		
	a. Their amplitudes are com	bined	b. causes the phase shift	
	c. creates some deviation to	the FM	d. All is correct	
29. T	he aircraft radio communicatio	n utilized the AM modula	tion not FM because?	
	a. Capture effect is concern	ed	b. Short communication rang	e
	c. the bandwidth is too wide)	d. Less complicate circuit	

NameID no	
30. The ADC with high DR is very useful for a radio receiver application becaus	e?
a. less gain is needed for an amplifier b. increases the ability to	receive lower level signal
c. Sensitivity of the receiver is increased d. all is correct	
(31 – 43) Answer the question in the blank (2 points each)	
31.An amplifier with the i/p and o/p impedance of 50 Ω has the voltage gain of	200, 100KHz bandwidth and
NF = 0. Calculate the V_N at the input at T = 300 K	
32. What equation is best described the need of an LNA at the front end of the	receiver?
33. At the maximum transmit power of 1.5W: SSB and AM can be compared an	nd found that the maximum
power in the USB of an AM signal isWwhich is equivalent to	%of the SSB.
34. Design a low pass L matching network for the 1000 Ω R $_{\text{S}}$ and 50+j18 Ω R $_{\text{L}}$ a	at 1.5 MHz.
35. A 2m ² aperture antenna can received 6 x 10 ⁻¹³ W signal transmitted from the	e satellite. Calculate the Effective
radiated power from the satellite if the path loss is known to be 140 dB?	
36. The side band of an RF carrier (0dBm) is measured by a spectrum analyze	r with 1 KHz bandwidth at 10KHz
offset as _60dBm. The phase noise of this carrier is	
37. Give two examples to detect the FM signal by using the DSP (Digital Signal	-
38. Recommend the frequency source to use as the LO. In the IQ Modulator in	the 170-200MHz band?
39. What will happen if the gain of the LNA in the frontend is set too high?	
40. The super heterodyne radio receiver is designed to overcome these proble	
41. Modern day's radio solved the image freq. problems without the needs of the method	ne hi Q filter by using this
42. What is the meaning of Low IF in the radio receiver	
43. The best way to solve Intermodulation of an amplifier is	

NameID no
44. Two amplifiers A and B have equal bandwidth of 500MHz and the gain of 30dB. Operating temperature is
290K. "A" has equivalent noise temperature of 170K but "B" has 120K? If the signal of -75dBm (minus
75dBm) is fed into each amplifier, calculate the noises power at the output of each amplifier? (10 points)
45.Calculate L,C of the L matching network in order to match the 50+j0 Ohms source to 200 Ohms load at 800
MHz. The matching network should not allow the dc to pass through. (5 points)
William Indian ing Network should not allow the de to pass through. (5 points)

46. Calculate the Neff and draw the timing diagram for the counting of n and n+1 from the following diagram. (5 points)

47. The input of a spectrum analyzer is connected to the -60dB RF sample port from a FM transmitter. The result is shown in the figure in 10db/div. scale. The J_0 is -10dBm. Calculate the output power of this transmitter? (5 points)

48. Draw the block diagram of the Armstrong's signal ($A_m \cos(\mathbf{w}_m t) A_c \cos(\mathbf{w}_c t) + A_c \sin(\mathbf{w}_c t)$)(5 points)

Name......ID no......

49. A FM signal with the magnitude of 2 mixed with the noises with magnitude of 1 as shown below. The phase and amplitude of the resultant FM signal follows the equation; $\Delta f = \phi_{rad} \times f_m$. Describe the method to compensate for this effect.? (5 points)

50. Describe the operations of the following diagram. Find the total division value and calculate the F_{out} when F1 = 25KHz, P = 128, B = 300, A = 5 (10points)

Answer sheet (Mark X over the only one selected choice)

- 1. (a) (b) (c) (d)
- 2. (a) (b) (c) (d)
- 3. (a) (b) (c) (d)
- 4. (a) (b) (c) (d)
- 5. (a) (b) (c) (d)
- 6. (a) (b) (c) (d)
- 7. (a) (b) (c) (d)
- 8. (a) (b) (c) (d)
- 9. (a) (b) (c) (d)
- 10. (a) (b) (c) (d)
- 11. (a) (b) (c) (d)
- 12. (a) (b) (c) (d)
- 13. (a) (b) (c) (d)
- 14. (a) (b) (c) (d)
- 15. (a) (b) (c) (d)

- 16. (a) (b) (c) (d)
- 17. (a) (b) (c) (d)
- 18. (a) (b) (c) (d)
- 19. (a) (b) (c) (d
- 20. (a) (b) (c) (d)
- 21. (a) (b) (c) (d)
- 22. (a) (b) (c) (d)
- 23. (a) (b) (c) (d)
- 24. (a) (b) (c) (d)
- 25. (a) (b) (c) (d)
- 26. (a) (b) (c) (d)
- 27. (a) (b) (c) (d)
- 28. (a) (b) (c) (d)
- 29. (a) (b) (c) (d)
- 30. (a) (b) (c) (d

Formulas

$$P_n = kT\Delta f$$
 $e_n = \sqrt{4kT\Delta f R}$ $i_n = \sqrt{2qI_{dc}\Delta f}$

$$F_N = \left[\frac{P_{NO}}{P_{NI}}\right]_{T=290K}$$
 , $F_N = \frac{S_{NI}}{S_{NO}}$, $NF = 10\log(F_N)$. $F_N = 1 + \frac{P_a}{GKTB}$

$$T_e = T_0 \log^{-1} \left[\frac{NF}{10} \right] - 1$$

Noise temperature (T) = 290 * (10^(NF/10)-1) (Kelvin)

$$L_1 = \frac{X_L}{\omega_0} = \frac{Q_S R_{smaller}}{\omega_0} = \frac{R_{Larger}}{\omega_0 Q_P}$$

$$Q_S = Q_P = \sqrt{\frac{R_{Larger}}{R_{smaller}} - 1} \qquad \frac{X_L}{R_{source}} = \frac{R_{load}}{X_C} \qquad C_1 = \frac{1}{\omega_0 X_C} = \frac{1}{\omega_0 Q_S R_{smaller}} = \frac{Q_P}{\omega_0 R_{Larger}}$$

Two modulus pre-scaler

L network

Overall
$$F_N = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} + \dots + \frac{F_n - 1}{G_1 G_2 \dots G_{n-1}}$$

Friss's formula

$$dBm = 10\log\left[\frac{p_{watts}}{0.001}\right] \quad dBm = 10\log(P_{mW})$$

 $F_o = NMf_{ref}$

Decibel conversion

Single modulus pre-scaler

$$= E (N + V/E)$$

 $F_{wea} = F_r (N + K / F)$ N,K,F is the integer Fractional N

Where F = total cycles in one round (8 means resolution 1/8 of Fr)

K = cycles in one round that N become N+1

$$N_{eff} = (N(F-K)+(N+1)K)/F = N+K/F$$

$$m = \frac{(B-A)}{(B+A)} \times 100\%$$
 or %m = $(E_i/E_c) \times 100\%$ $P_i = P_c(1 + \frac{m^2}{2})$

Sin A Sin 8 = 1/2cos(A-B) - 1/2 cos(A+B)

$$e = E_c \sin \omega_c t + \frac{mE_c}{2} \cos(\omega_c - \omega_i) t - \frac{mE_c}{2} \cos(\omega_c + \omega_i) t$$

 $F_{vco} = (MN+A) f_r$

Cos A Cos B = 1/2cos(A+B) - 1/2 cos(A-B)

$$E_{SF} = \frac{mE_c}{2}$$

FM noises
$$\Delta f = \phi_{rad} x f_m$$

$$B.W_{carson} = 2(\Delta f + f_m) = 2\Delta f + 2f_m$$

Armstrong's signal =
$$A_m \cos(\omega_m t) A_c \cos(\omega_c t) + A_c \sin(\omega_c t)$$