

King Mongkut's University of Technology Thonburi Midterm Examination

Semester 1 -- Academic Year 2017

Subject: EIE 301 Introduction to Probability and Random Processes for Engineers **For:** Electrical Communication and Electronic Engineering, 3rd Yr (Inter. Program)

Exam Date: Tuesday October 3, 2017 Time: 9.00am-12.00pm

Instructions:-

- 1. This exam consists of 5 problems with a total of 13 pages, including the cover.
- 2. This exam is closed books.
- 3. You are **not** allowed to use a written A4 note for this exam.
- 4. Answer each problem on the exam itself.
- 5. A calculator compiling with the university rule is allowed.
- 6. A dictionary is not allowed.
- 7. Do not bring any exam papers and answer sheets outside the exam room.
- 8. Open Minds ... No Cheating! GOOD LUCK!!!

Remarks:-

- Raise your hand when you finish the exam to ask for a permission to leave the exam
 room.
- Students who fail to follow the exam instruction might eventually result in a failure of the class or may receive the highest punishment within university rules.
- Carefully read the entire exam before you start to solve problems. Before jumping into the mathematics, think about what the question is asking. Investing a few minutes of thought may allow you to avoid twenty minutes of needless calculation!

Question No.	1 .	2	3	4	5	TOTAL
Full Score	20	20	20	20	20	100
Graded Score						

Name			Stude	nt ID	

This examination is designed by Watcharapan Suwansantisuk; Tel: 9069

This examination has been approved by the committees of the ENE department.

(Assoc. Prof. Rardchawadee Silapunt, Ph.D.)
Head of Electronic and Telecommunication Engineering Department

Exchanged:	605404600	Regular:	5	0705038		
					-	

Problem 1: Fill in the Blanks [20 points]

This problem consists of unrelated parts, which can be answered separately. Fill in the blanks for each question. You do not need to justify your answers.

Part 1: Data Analysis

A marketer wants to understand the number of mobile phones that each Thai citizen owns. The marketer surveys a sample of 1,000 Thai citizens and collects the following data.

Number of mobile phones owned	Number of Thai citizens	Relative frequency
0	40	
1	800	
2	100	
3	60	
Sum	1,000	

- (a) [2.5 points] Fill out the relative frequencies in the above table.
- (b) [2.5 points] Find the sample proportion of Thai citizens who own two or more mobile phones.

Answer	22	
THEMEL		

Part 2: Random Experiment

A student rolls two dice together and record the faces that show up. Suppose that each dice consists of three faces: A, B, and C. Furthermore, suppose that the two dice are identical, so that the order of their faces in an outcome is unimportant.

(a) [2.5 points] Identify the sample space.

$$\Omega =$$

(b) [2.5 points] Let E denote an event that none of the two dice rolls to face A. Identify all outcomes in event E.

$$E =$$

ra 2 1	*****	D 1	_	A7AEA20		
trenamaea.	605404600	Regular:	ם	0705038		
Jii Critting Co.	000101000	 zeeg ara	~		 	

Part 3: Souvenir Shop

A souvenir shop sells two types of products: postcards and key chains. Of all customers who enter the souvenir shop, 20% purchase nothing, 30% purchase postcards, and 60% purchase key chains.

(c) [5 points] Suppose that a customer enters the souvenir shop. Find the probability that the customer will purchase a postcard and a key chain.

Answer	=	

(d) [5 points] Given that a randomly-selected customer does not purchase a key chain, find the conditional probability that the customer purchases a postcard.

Answer	=		

Exchanged:	605404600	
------------	-----------	--

Regular: 5__0705038 ____

Problem 2: Data Transformation [20 points]

A sample x_1, x_2, \dots, x_{10} of size ten is transformed into another sample y_1, y_2, \dots, y_{10} , where

$$y_i = -3x_i^2 + 4,$$
 $i = 1, 2, 3, \dots$

The sample mean and sample standard deviation of x_1, x_2, \dots, x_{10} are

$$\bar{x} = -2, \qquad s = 8.$$

respectively.

(a) [10 points] Find the sample mean of y_1, y_2, \dots, y_{10} .

Exchanged: 605404600 ____ Regular: 5__0705038 ___ __

(b) [10 points] Suppose that an additional measurement x_{11} is available where $x_{11}=0$. Find the sample mean of $y_1, y_2, \ldots, y_{10}, y_{11}$.

Exchanged: 605	5404600	Regular:	5	0705038		
3					*****	

Problem 3: Music Playlist [20 points]

A playlist consists of 2 Japanese songs, 3 English songs, and 5 Thai songs. Suppose that songs in the playlist are shuffled in a random order.

(a) [10 points] Find the probability that the two Japanese songs do \underline{not} appear next to each other in the playlist.

Exchanged: 605404600 ____ Regular: 5__0705038 ___ __

(b) [10 points] Find the probability that a Thai song is first $\underline{\text{or}}$ second in the playlist.

7

Exchanged:	605404600	 Regular:	5	0705038	

Problem 4: Library Service [20 points]

A library opens daily from 6am to 6pm. Historical data indicate that 20% of library visitors arrive in the morning (6am–10am), 30% arrive at midday (10:01am–2pm), and 50% arrive in the afternoon (2:01pm–6pm). In addition, 70% of all morning visitors check out (borrow) library books, while 40% of the midday visitors and 60% of the afternoon visitors check out library books.

Suppose a visitor is randomly chosen.

(a) [10 points] If this visitor checked out a library book, what is the probability that the visitor arrived in the morning?

Exchanged.	605404600	Regular:	5	0705038	
мснинуви.	000404000	 neguun.	٠	0100000	

(b) [10 points] If this visitor <u>did not check out a library book</u>, what is the probability that the visitor arrived in the <u>afternoon</u>?

Exchanged:	605404600	Regular:	5	0705038	
v		 •/		 	

Problem 5: Coin Tosses [20 points]

A coin has the probability of 0.7 to turn head. This coin is tossed five times in a row. Assume that successive tosses are independent.

(a) [10 points] Find the probability that the 1st toss turns $\underline{\text{head}}$ and the 2nd toss turns $\underline{\text{tail}}$.

Exchanged: 605404600 ____ Regular: 5__0705038 ____

(b) [10 points] Find the probability that <u>one</u> of the five tosses turns <u>head</u> and the remaining four tosses turn <u>tail</u>.

Formula Sheet

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum_{i=1}^n x_i}{n}$$

$$\mu = \frac{x_1 + x_2 + \dots + x_N}{N} = \frac{\sum_{i=1}^N x_i}{N}$$

$$\tilde{x} = \begin{cases} x'_m & \text{if } n \text{ is odd, where } m = \frac{n+1}{2} \\ \frac{1}{2}(x'_m + x'_{m+1}) & \text{if } n \text{ is even, where } m = \frac{n}{2} \end{cases}$$

$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 = \frac{1}{n-1} \left[\left(\sum_{i=1}^n x_i^2 \right) - n(\bar{x})^2 \right]$$

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^N (x_i - \mu)^2 = \frac{1}{N} \left(\sum_{i=1}^N x_i^2 \right) - \mu^2$$

For $y_i = ax_i + b$, where i = 1, 2, ..., n.

$$\bar{y} = a\bar{x} + b$$
, $s_y^2 = a^2 s_x^2$, $s_y = |a| s_x$

Axioms of probability:

- 1. The probability of any event A is non-negative: $\mathbb{P}\{A\} \geq 0$
- 2. The probability of the sample space equals one: $\mathbb{P}\left\{\Omega\right\} = 1$
- 3. If A_1,A_2,A_3,\ldots are pairwise disjoint events, then $\mathbb{P}\left\{\bigcup_{i=1}^{\infty}A_i\right\}=\sum_{i=1}^{\infty}\mathbb{P}\left\{A_i\right\}$
 - The probability of the null event equals zero: $\mathbb{P}\{\emptyset\} = 0$
 - If events A_1, A_2, \ldots, A_n are pairwise disjoint, then $\mathbb{P}\left\{\bigcup_{i=1}^n A_i\right\} = \sum_{i=1}^n \mathbb{P}\left\{A_i\right\}$
 - For any event A, $\mathbb{P}\{A'\} = 1 \mathbb{P}\{A\}$
 - The probability of any event A is at most one: $\mathbb{P}\{A\} \leq 1$
 - For any two events A and B, $\mathbb{P}\{A \cup B\} = \mathbb{P}\{A\} + \mathbb{P}\{B\} \mathbb{P}\{A \cap B\}$
 - For any three events A, B, and C.

$$\begin{split} \mathbb{P}\left\{A \cup B \cup C\right\} &= \mathbb{P}\left\{A\right\} + \mathbb{P}\left\{B\right\} + \mathbb{P}\left\{C\right\} \\ &- \mathbb{P}\left\{A \cap B\right\} - \mathbb{P}\left\{A \cap C\right\} - \mathbb{P}\left\{B \cap C\right\} + \mathbb{P}\left\{A \cap B \cap C\right\} \end{split}$$

- When outcomes are equally likely, $\mathbb{P}\{A\} = \frac{|A|}{|\Omega|}$
- The product rule: the number of k-tuples is $n_1 n_2 n_3 \cdots n_k$

$${}^{n}P_{k} = n \times (n-1) \times (n-2) \times \dots \times (n-k+1) = \frac{n!}{(n-k)!}$$

$$0! = 1, \quad n! = n(n-1)(n-2) \dots 1$$

$$\binom{n}{k} = \frac{{}^{n}P_{k}}{k!} = \frac{n!}{k!(n-k)!}$$

$$\mathbb{P} \{A \mid B\} = \frac{\mathbb{P} \{A \cap B\}}{\mathbb{P} \{B\}}$$

$$\mathbb{P} \{A \cap B\} = \mathbb{P} \{A\} \mathbb{P} \{B \mid A\} = \mathbb{P} \{B\} \mathbb{P} \{A \mid B\}$$

$$\mathbb{P} \{A_{1} \cap A_{2} \cap A_{3}\} = \mathbb{P} \{A_{3} \mid A_{2} \cap A_{1}\} \cdot \mathbb{P} \{A_{2} \mid A_{1}\} \cdot \mathbb{P} \{A_{1}\}$$

The law of total probability: Suppose events A_1, A_2, \ldots, A_n partition the sample space Ω . Then the probability of any other event B equals

$$\mathbb{P}\left\{B
ight\} = \sum_{i=1}^{n} \mathbb{P}\left\{B \mid A_{i}
ight\} \mathbb{P}\left\{A_{i}
ight\}$$

Bayes' theorem: Suppose events A_1, A_2, \ldots, A_n partition the sample space Ω and have the probabilities $\mathbb{P}\{A_1\}, \mathbb{P}\{A_2\}, \ldots, \mathbb{P}\{A_n\}$. Let B denote any event that has a chance to occur, i.e., $\mathbb{P}\{B\} > 0$. Then the posterior probability of A_j given that B has occurred is

$$\mathbb{P}\left\{A_{j} \mid B\right\} = \frac{\mathbb{P}\left\{A_{j} \cap B\right\}}{\mathbb{P}\left\{B\right\}} = \frac{\mathbb{P}\left\{B \mid A_{j}\right\} \mathbb{P}\left\{A_{j}\right\}}{\sum_{i=1}^{n} \mathbb{P}\left\{B \mid A_{i}\right\} \mathbb{P}\left\{A_{i}\right\}}$$

for each index $j = 1, 2, \ldots, n$.

- Events A and B are independent $\iff \mathbb{P} \{A \mid B\} = \mathbb{P} \{A\}$ $\iff \mathbb{P} \{B \mid A\} = \mathbb{P} \{B\} \iff \mathbb{P} \{A \cap B\} = \mathbb{P} \{A\} \mathbb{P} \{B\}$
- Events A_1, A_2, \ldots, A_n are mutually independent iff for every size $k \in \{2, 3, \ldots, n\}$ and for every subset of indices i_1, i_2, \ldots, i_k , the probability of an intersection equals the product of probabilities:

$$\mathbb{P}\left\{A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k}\right\} = \mathbb{P}\left\{A_{i_1}\right\} \cdot \mathbb{P}\left\{A_{i_2}\right\} \cdots \mathbb{P}\left\{A_{i_k}\right\}$$