

King Mongkut's University of Technology Thonburi Midterm Examination

Semester 1 -- Academic Year 2017

Subject: EIE 210 Electronic Devices and Circuit Design I

For: Electrical Communication and Electronic Engineering, 2nd Yr (Inter. Program)

Exam Date: Wednesday September 27, 2017 Time: 13.00-16.00 pm.

Instructions:-

- 1. This exam consists of 5 problems with a total of 8 pages, including the cover.
- 2. This exam is closed books.
- 3. You are **not** allowed to use any written A4 note for this exam.
- 4. Answer each problem on the exam itself.
- 5. A calculator compiling with the university rule is allowed.
- 6. A dictionary is not allowed.
- 7. Do not bring any exam papers and answer sheets outside the exam room.
- 8. Open Minds ... No Cheating! GOOD LUCK!!!

Remarks:-

- Raise your hand when you finish the exam to ask for a permission to leave the exam
 room.
- Students who fail to follow the exam instruction might eventually result in a failure of the class or may receive the highest punishment with university rules.
- Carefully read the entire exam before you start to solve problems. Before jumping
 into the mathematics, think about what the question is asking. Investing a few minutes
 of thought may allow you to avoid twenty minutes of needless calculation!

Exam No.	1	2	3	4	5	6	7	8	TOTAL
Full Score	<u>10</u>	<u>10</u>	<u>20</u>	<u>30</u>	<u>10</u>				<u>80</u>
Graded Score									

Name	Student ID

This examination is designed by

Asst. Prof. Kamon Jirasereeamornkul. Ph.D, & Prof. Niel S. Kurt. Ph.D.; Tel: 9067.

This examination has been approved by the committees of the ENE department.

(Assoc. Prof. Rardchawadee Silapunt, Ph.D.)

Head of Electronic and Telecommunication Engineering Department

Υ	Ct. 1 ID	C 4 H	2
Name	Student ID	Seat #	4

1. A pn-junction silicon diode (T = 350 K) is doped with the following concentrations: $N_A = 2.5 \times 10^{16}$ cm⁻³, $N_D = 4.5 \times 10^{13}$ cm⁻³. Calculate the intrinsic carrier density n_i of silicon and the junction built-in voltage V_0 (10 marks).

2. Analyze and draw the output of the clipper in Figure 1. Assume that the diode is an ideal one (10 marks).

3

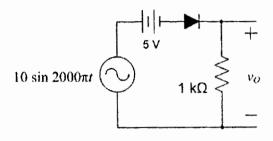


Fig. 1

3. Consider the circuit in Figure 2. Sketch the waveform of output voltage v_O and current i_O compare with secondary voltage v_s . Also, determine the peak values of i_O and the reverse voltage at D_1 . (20 marks)

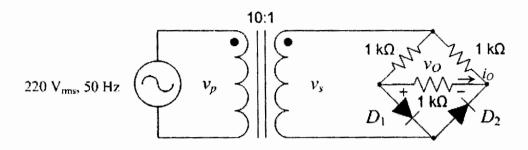
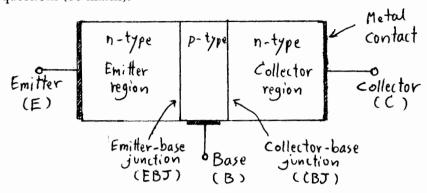



Fig. 2

- 4. A zener diode whose nominal voltage is 6.8 V at 20 mA is used in the design of a shunt regulator fed from a 24-V supply. The knee current I_{ZK} is specified to be 5 mA. The load current varies over a range of 0 mA to 200 mA.
 - 4.1) Draw a sketch of the circuit (input voltage, zener diode, shunt resistor R_S , and load R_L) (10 marks).
 - 4.2) Find a suitable value for the shunt resistor R_S (10 marks).
 - 4.3) Calculate the maximum power dissipation of the zener diode and of the shunt resistor R_S (10 marks)?

5. Bipolar junction transistor in npn-format and in active mode: Check the answers for the following questions (10 marks):

The emitter-base junction is in forward bias	□ yes	□ no	
The collector-base junction is in forward bias	□ yes	□ no	
The collector current depends on the collector-base voltage	□ yes	□ no	
The collector current depends on the emitter-base voltage	□ yes	□ no	
The common-emitter current gain β is in the range of	0.1 - 10	□ 50 - 200	$\Box 10^5 - 10^7$

Name.....Student ID.....Seat #....

7

Summary of given formulars

Quantity	Relationship	Values of Constants and Parameters (for Intrinsic Si at $T = 300 \text{ K}$) $B = 7.3 \times 10^{15} \text{ cm}^{-3} \text{K}^{-3/2}$ $E_z = 1.12 \text{ eV}$ $k = 8.62 \times 10^{-5} \text{ eV/K}$ $n_i = 1.5 \times 10^{10}/\text{cm}^3$		
Carrier concentration in intrinsic silicon (cm ⁻³)	$n_i = BT^{3/2} e^{-E_4 RkT}$			
Diffusion current density (A/cm ²)	$J_{p} = -qD_{p}\frac{d\psi}{dx}$ $J_{n} = qD_{n}\frac{dn}{dx}$	$q = 1.60 \times 10^{-19}$ coulomb $D_p = 12 \text{ cm}^2/\text{s}$ $D_n = 34 \text{ cm}^2/\text{s}$		
Drift current density (A/cm²)	$J_{\text{dnft}} = q(\rho\mu_{p} + n\mu_{n})E$	$\mu_p = 480 \text{ cm}^2/\text{V} \cdot \text{s}$ $\mu_n = 1350 \text{ cm}^2/\text{V} \cdot \text{s}$		
Resistivity (Ω·cm)	$\rho = 1/[q(p\mu_p + n\mu_n)]$	μ_p and μ_n decrease with the increase in doping concentration		
Relationship between mobility and diffusivity	$\frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = V_T$	$V_T = kT/q \simeq 25.9 \text{ mV}$		
Carrier concentration in n-type silicon (cm ⁻⁵)	$n_{m0} \simeq N_D$ $p_{m0} = n_r^2 / N_D$			
Carrier concentration in p-type silicon (cm ⁻³)	$p_{p0} \simeq N_A$ $n_{p0} = n_i^2 / N_A$			
Junction built-in voltage (V)	$V_0 = V_T \ln \left(\frac{N_A N_D}{n_i^2} \right)$			
Width of depletion region (cm)	$\frac{x_n}{x_p} = \frac{N_A}{N_D}$ $W = x_n + x_p$ $= \sqrt{\frac{2\epsilon_s}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) (V_0 + V_R)}$	$\epsilon_0 = 11.7\epsilon_0^*$ $\epsilon_0 = 8.854 \times 10^{-14} \text{ F/cm}$		

Quantity	Relationship	Values of Constants and Parameters (for Intrinsic Si at $T = 300 \text{ K}$)
Charge stored in depletion layer (coulomb)	$Q_{J} = q \frac{N_{A}N_{D}}{N_{A} + N_{D}} AW$	
Forward current (A)	$I = I_p + I_n$ $I_p = Aqn_i^2 \frac{D_p}{L_p N_O} \left(e^{VN\tau} - 1 \right)$ $I_n = Aqn_i^2 \frac{D_n}{L_n N_A} \left(e^{VN\tau} - 1 \right)$	
Saturation current (A)	$I_{s} = Aqn_{i}^{2} \left(\frac{D_{\rho}}{L_{\rho}N_{D}} + \frac{D_{s}}{L_{n}N_{A}} \right)$	
I-V relationship	$I = I_s \left(e^{\nu V_T} - 1 \right)$	
Minority-carrier lifetime (s).	$\tau_{\rho} = L_{\rho}^2/D_{\rho} \qquad \tau_{\rho} = L_{\rho}^2/D_{\rho}$	$L_p, L_n = 1 \mu \text{m to } 100 \mu \text{m}$ $\tau_p, \tau_n = 1 \text{ ns to } 10^4 \text{ ns}$
Minority-carrier charge storage (coulomb)	$Q_{p} = \tau_{p} I_{p} \qquad Q_{n} = \tau_{n} I_{n}$ $Q = Q_{p} + Q_{n} = \tau_{T} I$	
Depletion capacitance (F)	$C_{N} = A \sqrt{\left(\frac{\epsilon_{1}q}{2}\right) \left(\frac{N_{A}N_{D}}{N_{A} + N_{D}}\right) \frac{1}{V_{O}}}$ $C_{I} = C_{N} / \left(1 + \frac{V_{R}}{V_{O}}\right)^{m}$	$m=rac{1}{3}$ to $rac{1}{2}$
Diffusion capacitance (F)	$C_d = \left(\frac{\tau_{\gamma}}{V_{\Gamma}}\right) I$	